Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.

Clear["Global™ *"]

5 - 15 Radius of Convergence by Differentiation or Integration

Find the radius of convergence in two ways: (a) directly by the Cauchy-Hadamard for-
mula in Sec. 15.2, and (b) from a series of simpler terms by using Theorem 3, p. 687, or
Theorem 4, p. 688.
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The center of the series is 2 i.
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The power of the power term is 1, so the answer should be
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The above green agrees with the text answer. This is the half of the problem worked with
Cauchy-Hadamard. The other way, which is developed by the s.m., is the series method.
However, using Mathematica, it is only a matter of invoking the command
SumConvergence, which in this case works well with the original expression,
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The center of the series is -2 i. In part (a) I will look at a Cauchy-Hadamard solution,
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The power of the power term is 2, which implies the radius of convergence is,



2 | 15.3 Functions Given by Power Series 685.nb

(3)1/2
NS

For part (b) I will look at differentiation of series terms, or in this case, the
SumConvergence command,
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Due to Mathematica's indolence, the square root symbol has to be applied by hand. Since
the lhs is positive in sign, the resulting square root will be also.
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The center of the series is 0. For part (a),
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The power of the power term being 2 n, the resulting radius of convergence is
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As for part (b), the SumConvergence command again,
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The center of the series is -2. For part (a),
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The power of the power term being 2 n, the resulting radius of convergence is
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As for part (b), the SumConvergence command again,
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Or, to spell it all out,
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The center of the series is 0. For part (a),
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In the above cell some assumption has to be made about k, or else Mathematica will go into
a trance and not come back.

The power of the power term is n+k. As I did before I will ignore anything that does not
modify the n particle. This would result in
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For part (b),
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SumConvergence[ (Binomial [n +k, k] ‘1) z ok, n]

Abs[z] <1

What was interesting about this is how quickly Mathematica came back with this answer,
without demanding a description of k.
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The center of the series is i. For part (a),
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The power of the power term is n.
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For part (b),
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As before, some gathering is necessary to match the text answer.



